Topology Optimization Applied to the Design of Functionally Graded Piezoelectric Bimorph
نویسندگان
چکیده
Functionally Graded Materials (FGMs) possess continuously graded material properties and are characterized by spatially varying microstructures. The smooth variation of properties may offer advantages such as reduction of stress concentration and increased bonding strength. Recently, this concept has been explored in piezoelectric materials to improve properties and to increase the lifetime of bimorph piezoelectric actuators. Usually, elastic, piezoelectric, and dielectric properties are graded along the thickness of a piezoceramic PGM. Thus the gradation law of piezoceramic properties can influence the performance of piezoactuators. In this work, topology optimization has been applied to find the optimum gradation variation in piezoceramic FGMs to improve actuator performance measured in terms of output displacements. A bimorph type actuator design is considered. Accordingly, the optimization problem is posed as finding the optimized gradation variation of piezoelectric properties that maximizes output displacement or output force in the tip of bimorph actuator. The optimization algorithm combines the finite element method with sequential linear programming (SLP). The finite element method applied is based on the graded finite element concept where the properties change smoothly inside the element. This approach provides a continuum approximation of material distribution (CAMD), which is appropriate to model FGMs. The alternative FGM modelling using traditional FEM formulation and discretizing the FGM into layers gives a discontinuous stress distribution, which is not compatible with FGM behavior. The present results consider gradation between two different piezoceramic properties and consider two-dimensional models with plane stress assumption.
منابع مشابه
Topology Optimization of the Thickness Profile of Bimorph Piezoelectric Energy Harvesting Devices
Due to developments in additive manufacturing, the production of piezoelectric materials with complex geometries is becoming viable and enabling the manufacturing of thicker harvesters. Therefore, in this study a piezoelectric harvesting device is modelled as a bimorph cantilever beam with a series connection and an intermediate metallic substrate using the plain strain hypothesis. On the other...
متن کاملApplication of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کاملDynamic Stability of Functionally Graded Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation
This paper studies dynamic stability of functionally graded beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The Young’s modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing dynamic equation is established. The eff...
متن کاملFree Vibration of Functionally Graded Beams with Piezoelectric Layers Subjected to Axial Load
This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers subjected to axial compressive loads. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton’s principle, the governing equation is established. Resulting equation is solved using the Euler’s Equation. The effects of the constituent...
متن کاملReflection of Plane Wave at Traction-Free Surface of a Pre-Stressed Functionally Graded Piezoelectric Material (FGPM) Half-Space
This paper is devoted to study a problem of plane waves reflection at a traction-free surface of a pre-stressed functionally graded piezoelectric material (FGPM). The effects of initial stress and material gradient on the reflection of plane waves are studied in this paper. Secular equation has been derived analytically for the pre-stressed FGPM half-space and used to show the existence of two ...
متن کامل